Reconstruction and Dissection of the Entire Human Visual Pathway Using Diffusion Tensor MRI

نویسندگان

  • Sabine Hofer
  • Alexander Karaus
  • Jens Frahm
چکیده

THE HUMAN VISUAL SYSTEM COMPRISES ELONGATED FIBER PATHWAYS THAT REPRESENT A SERIOUS CHALLENGE FOR DIFFUSION TENSOR IMAGING (DTI) AND FIBER TRACTOGRAPHY: while tracking of frontal fiber bundles may be compromised by the nearby presence of air-filled cavities, nerves, and eye muscles, the anatomic courses of the three main fiber bundles of the optic radiation are subject to pronounced inter-subject variability. Here, tractography of the entire visual pathway was achieved in six healthy subjects at high spatial accuracy, that is, at 1.8 mm isotropic spatial resolution, without susceptibility-induced distortions, and in direct correspondence to anatomic MRI structures. Using a newly developed diffusion-weighted single-shot STEAM MRI sequence, we were able to track the thin optic nerve including the nasal optic nerve fibers, which cross the optic chiasm, and to dissect the optic radiation into the anterior ventral bundle (Meyer's loop), the central bundle, and the dorsal bundle. Apart from scientific applications these results in single subjects promise advances in the planning of neurosurgical procedures to avoid unnecessary damage to the visual fiber system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

Evaluation of the relationship between axon injury and clinical symptoms in patients with multiple sclerosis using diffusion tensor MRI imaging

Background: Magnetic resonance imaging (MRI) is a non-invasive imaging technology that shows detailed anatomical and pathological images. It is often used for disease detection, diagnosis, and treatment monitoring, in particular with neurodegenerative diseases, such as Multiple sclerosis (MS), Alzheimer's and amyotrophic lateral sclerosis. However, conventional MRI provides only qualitative inf...

متن کامل

Regularized Iterative Reconstruction in Tensor Tomography Using Gradient Constraints

This paper investigates the iterative reconstruction of tensor fields in diffusion tensor magnetic resonance imaging (MRI). The gradient constraints on eigenvalue and tensor component images of the diffusion tensor were exploited. A computer-generated phantom was used in order to simulate the diffusion tensor in a cardiac MRI study with a diffusion model that depends on the fiber structure of t...

متن کامل

Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging

Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010